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NOMENCLATURE
A, dimensionless argument;
a, thermal diffusivity;
C, specific heat;
d,  density;
E, errorin time integral ;
L, thickness;
p, transformed time;
g, parameter in transformed equation;
t, time;
TI, time integral;
U, transformed temperature;
x,  distance.
Greek symbols

a,  root of transcendental equation;
{, dimensioniess ratio of conductances, 4,L,/4,L,;
2}

,  temperature;
A, thermal conductivity;
o, flux;
p,  dimensionless ratio of heat capacity per unit area,
d?CZLZ/dlClLl M

o, dimensionless ratio [1,d,C,/4,d,C,]};

Subscripts
n,  root index;
x,  differentiation with respect to distance;
t, differentiation with respect to time;
1, 2, layer number.

1. INTRODUCTION
THE THERMAL diffusivity of ceramic and organic insulating
materials is most readily obtained from transient linear heat
flow through an infinite slab. The relative case of fabricating
the sample in the form of a slab makes this geometry

attractive. Plummer, Campbell and Comstock {1] developed
a method based on a constant flux into a thick slab of
material which was treated as a semi-infinite solid. This
method was further refined by Harmathy [2] who also
developed a pulse heating scheme. Steere [3] used the
constant flux method with samples of plastic assembled from
multilayers of thin films. In all cases the finite samples were
considered to be infinitely thick during the time when
measurements were taken. Also, in each case the heat
capacity of the heater was shown to be a small fraction of
the heat capacity of the sample and was therefore not
included in the analysis.

When the constant flux input method is used with a low
density, low specific heat and low conductivity insulator such
as foamed polyurethane, difficulties arise. The conductivities
of many solid and foamed insulators are approximately
proportional to their densities; hence, their diffusivities are
similar. But the heat capacity per unit volume of the sample
can vary widely since it depends upon density and specific
heat. Thus, for low density organic insulators the heat
capacity of the heater may represent an appreciable fraction
of the heat capacity of the sample. In.such cases it is necessary
to treat the heater as a separate layer with its own thermal
properties and to determine the diffusivity of the sample from
an analysis of a double layer infinite slab model.

2. THEORY
The temperature distribution, &x, ), within an infinite
slab of thickness, L, is given by the solution of the one
dimensional equation of linear heat flow with specified
boundary conditions.

ab (x,t) = 8{x,t)for0 < x < L. 1)
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The distance x is measured from the input face and the
thermal diffusivity, a, which is defined as A/dC with A being
the thermal conductivity, 4, the density, and C, the specific
heat; is assumed to be independent of position, time, and
temperature. The subscripts denote differentiation with
respect to a particular variable.

The boundary condition at the input face, x = 0, will be
an input flux, & = — i6,, which experiences a step function
change at time zero. The temperature of the output face will
be held constant. The temperature of the slab will be
uniform and equal to the output face temperature at time
zero. These boundary conditions can be written as

0,t)= —-400,)=0,1 <0 2)

&0,y = —10,0,1) = Py, > 0
&L,1)=0,t20 3)
x,1)=0,r<0. 4)

The solution for the homogeneous single layer has been
given by Carslaw and Jaeger [4] as
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graphite coated asbestos, and Fe-Ni evaporated on plastic
have been used as heaters. If the heat capacity of the heater
is an appreciable fraction of the heat capacity of the sample,
it is necessary to use a double layer infinite siab for a nfodel.

For an infinite slab composed of two layers, each of
uniform thickness, an additional pair of boundary condi-
tions are required ; namely, the flux and temperature must be
continuous at the interface. If the numerical subscripts refer
to the sequence of layers from the front face, the boundary
conditions may now be expressed as

6,(Ly, 1) = 8Ly, ) (8)

ABi Ly 0 = 2,8, (L., 1) )

0, Ly + L) t] =0,: <0 (10)
8i(x,)=0,:<00<x< L, an

Oyx,) = 0,1 <O, L, < x <(L; + L,)

This boundary value problem can be solved by the use of
the theory of Laplace transforms which converts the partial

8% ) = —— e

[]

At the input face, x = 0, and for large values of time the
series can be truncated at one term to give

80,6 = 8,.{1 — 8n~2 exp (—n’at/d3)} )

where 8, = $,L/4
The value of a can be determined from equation (6) or by
the use of the time integral which is defined as

TI(x) = Z {1 — 8x, /6(x, 0)} dt. )

For the input face TIO0) = I?/3a, at the center of the slab,
TKL/2) = 1-375(1*/3a), and at the output face THL) = 1-5
(L3/3a).

‘When the heat source for the infinite slab is in physical
contact with the slab and has heat capacity itself, the condi-
tions used in deriving eq. (5] afe not exactly fulfilled as it
had been assumed that the heat flux came from a source
with no heat capacity. Whenever an electrically energized
heat source is used, the power is dissipated in a conducting
clement which may require a substratum for support. Thin
sheets of chrome! [1], constantan {2, 3], palladium [2],

DL — x) 8BLN " exp[—(2n + 1)nat/dl¥]cos (2n + 1) mx/2L

(2n + 1)? @

differential equation in 6(x,t) to the ordinary differential
equation in U(x, p} by the use of the relation

U, p) = zexw—p:} 8, 1) dr.

The transformed equations and boundary conditions
become

U, ) = qiUx,p) =0, O<x<L (la)

Ujpeddx, Y= q3Us(x.py =0, L, <x<(Ly+ L (b}
Uy0,p) = —®y/4sp (2a)

ULy, p) = UslLy, p) (82)

A ULy, p} = A,Us(Ly, p) (99)

U Ly + Lhpl =0 (108)

where g = p/a, and ¢ = p/a,.
Applying the boundary conditions to the general solution
of the transformed equation gives

Uyx,p) =
Pq:4,

®, [osinhg,(L, — x)coshg,L, + cosh g,(L, ~ x)sinh g,L
cosh gq,L, cosh g,L, + sinhgq,L, sinhg,L,

esinhg, [(L, + Ly} — x]

2j|,0<x<l.l

(12)

Ujix,p) =

©
P9144 [aco:hqlL, cosh g,L; + sinh q,L, sinh ¢,L,

],L, <x<{L,+Lj)
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where 0 = g,4,/q;A, = [4,d,C,/4,d,C, ]}

The solution is given by the inverse transform of equation
(12) which may be written as

0(x, 1) = X {residues of exp (pt) Ulx, p)lpup,  (13)

where the summation is taken over all of the singular points
P of U(x, p). These will be at p = 0 and the zeros of the term
in brackets of the denominator of equation (12). This term
can be zero only if the arguments are imaginary, therefore

o = tan a“Ll tan az'Lz (14)

when g = ia, and it is now necessary to find the n roots of
this transcendental equation. Since o is always positive, a
root can appear for only those values of a, L, and «,L, for
equation (14) as

6 = AL, Ay/A,L,A; = tan A, tan 4,

roots will occur at the intersections of lines of constant o
and the line with slope of 4,L,/1,L,. Using these values of
a, and evaluating the residues of the singularities, the
temperature in layer one is obtained as
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A grid of 3-2 mm strips was formed by preferential etching
of the Fe-Ni coating.

The high heat capacity samples consisting of 0-305 meter
squares with a thickness of 0-:0102 m were cut from a con-
tinuous strip of gum rubber. The low heat capacity samples
consisted of 0-305 m square of 0-0506 m thick foamed
polyurethane. A differential thermopile of two junctions of
number 30 copper constantan wire were used to measure
the temperature. To measure temperatures at interior points
in built-up layer samples, the number of couples was in-
creased so that the thermopile outputs were all about equal.
Temperatures were recorded with a 12 point recorder at
6 s intervals.

The recorded temperatures at the front face of the sample
were used to produce a graph of In {0, — &1)}/{8, — 8,}
vs. time from which a could be determined from the slope.
The time integrais were also determined from the recorder
record by the use of numerical integration.

The heat sinks were fabricated from surface ground slabs
of 00254 m aluminum plate and were 0-61 m square. A
labyrinth of 0-00954 m aluminum with 0-0318 meter channels
was bolted to the rear of the heat sink. Thermostated,

- L
el(x‘ t) - (po [(Lx X) + _EJ
Ay A2
_ ETP_OZ[&,J., sina, (L, — x)cosay,L, + ¢4, cosa,, (L, — x) sina,,l.,]exp(-a,ai,t),o <x<L, (152)
A ay,D
1
and in layer two as
L+ L, - = g + L, - —a,0?
Oix, 1) = ®, [L, ; 2 — x] _ 2¢°Z 8in a@,,(L, 2 - x) exp ( al“u‘)’ L <x<(L +Ly
2 - (15b)

where D = [(@,.%2042L, + %15%504,Ly) sin Ly cO8 ay,Ly + (@f,d Ly + afed; L) co8 oynLy sin ay,L,].

3. EXPERIMENTAL

The experimental arrangement as shown in Fig. 1 con-
sisted of a central heater, a pair of identical samples and a
pair of constant temperature heat sinks. A high heat capacity
heater was fabricated from an asbestos heating paper [5]
consisting of a graphite conducting layer between two
identical covering sheets of asbestos. The uniformity of the
power generation per unit area was sufficient to produce
temperature differences of less than 3 per cent under steady
state conditions when measured at a dozen points on a
square foot sample. Power was supplied to the heater from
a regulated a.c. supply.

A low heat capacity heater was fabricated from a sheet of
0025 mm polyimide plastic [6] upon which a coating of
0-008 mm iron nickel alloy had been vacuum deposited [7].

refrigerated water was circulated through the labyrinth in
cach sink. The sinks and samples were enclosed with 0-153 m
of foamed polyurethane and placed within an angle iron
frame and at a pressure of 300 newtons/m? applied by
means of screw and torque wrench. To shield it from air
currents the whole assembly was enclosed within a shroud.
The mean sample temperature was 10-5°C,

4. RESULTS
Graphical analysis of &0, t) for a sample of gum rubber
heated by means of a graphite-asbestos heater conformed
to the expected exponential approach to equilibrium pre-
dicted by equation (5). A slight discrepancy was noted
between the observed intercept of 0-791 + 0-013 and the
expected value of 8/2% = 0-8105. Changing to the smaller
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FiG. 1. Experiment configuration for double layer infinite
slab.

heat capacity heater of Fe-Ni on plastic increased the
intercept to (-811 4+ 0-004 and decreased the time integral
from 01320 to 01237 h. The diffusivity derived from the
slope remained essentially the same in the two cases. The
reduction in the time integral indicates that less total energy
was needed to reach equilibrium as the heat capacity of the
heater was reduced. The time integral was also determined
at distances of 4, 4, and # of the total sample thickness by the
use of a sample assembled from layers of thickness {L.

The graphite-asbestos heater was used with a sample of
foamed polyurecthane, a light weight insulating material
having a thermal conductivity of 0016 10 0-022 Wm ™! deg ™ *
[8) and a density of 25 to 32 kg/m?® [8). Graphical analysis
of this case as shown in Fig. 2 indicated an intercept of
0-866 + 0-004 and a diffusivity of 554 x 10~ m?/s. Upon
changing to the Fe-Ni plastic heater, the intercept dropped
to 0-817 + 0003 and the diffusivity increased to 682 x
10~7 m?/s. The time integral was reduced from 0-487 to
(-348 h indicating the proportionally higher ratio of the heat
capacity of the heater to the sampie.

To account for the heat capacity of the heater, it is
necessary to consider the experiment as a double layer
infinite slab. The flux is assumed to be generated in a plane
at x = 0 by Joule heating of an electrical conducting coating
having no thickness. The substratum supporting this coating
was therefore assumed to be the first layer and to have a
thickness of 4 of the total thickness of the asbestos-graphite-
asbestos heater element. The sample is then assumed to be the
second layer. The temperature and, hence, the time integral
was measured at the interface between the asbestos and the
sample at x = L.

In order to use equation (15) to find the value of a,, it is
necessary to know the value of a,, the diffusivity of the
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FiG. 2. Fractional temperature changes at input face of a
foamed urethane sample.

heater substratum. This was done by preparing a sample
assembled from a stack of heater elements, thereby, making
the properties of layers 1 and 2 identical. The temperatures
and time integrals were measured between the first four
layers. Equation (15) was simplified by setting a; = a, = a
and, then, this was used to obtain a with the appropriate
lengths used for each case. This was accomplished by using
a computer program to compare the observed time integral
with calculated time integrals for three different values for a,
parabolic interpolation to find a new value for a and a new
time integral, then using the three closest a’s, interpolated
to find another new a and then repeating until the fractional
change in a was Jess than 10~*, This usually required 4 or 5
interpolations. A value of 689 4 0-24 x 10" °m?/s was
found for the diffusivity of the graphite—asbestos heater. The
thermal conductivity of the samples and heater were deter-
mined from separate steady state experiments using a heat
flow meter.

After determining the necessary thermal properties of the
heater, the foamed polyurethane graphite-asbestos heater
case was re-cxamined as a two layer case. By using the
experimentally determined time integral of 0-487 h and the
computer program for evaluating equation (15), a diffusivity
of 740 x 1077 m?/s was obtained. This result is somewhat
larger than the values obtained by the use of the equation
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Table 1. Thermal diffusivities determined by a step function change in flux units of m*/s x 108
Single layer analysis Double layer analysis
Sample Heater Graphical method Time integral method Eq.(5) Eq.(158)  Eq.(15b)
Eq. (6) x=0 Avefromd4TI] x=1L, Ave. from 4TI
Gum Rubber Graphite-Asbestos 7-33 731 771 £+ 032 762 800 + 0-32
Fe-Ni, Polyimide 792 781 829 + 043 785 833 + 0-33
Polyurethane Graphite-Asbestos 554 487 509 + 20 740 714 +27
Fe-Ni, Polyimide 682 68-0 677 +14 73-6 724 +28

a = I3/3(TI). The small difference indicates that some error
could still be present when using the Fe-Ni plastic heater.
Through use of this value for the diffusivity of foamed poly-
urethane, a value of 1003 J kg~ 'deg™? is obtained for the
specific heat; this is in fair agreement with a reported range
of 8401045 J kg~ ! deg~* [9].

5. CONCLUSION

From examination of the results obtained by graphical
and time integral analysis of the trangient heat flow in a low
heat capacity sample, it has been shown that large errors are
introduced when the heat capacity of the heater is ignored.
When discussing this type of error, it was found more con-
venient to use the extensive variables of conductance, A/L,
and heat capacity per unit area, JCL, rather than the in-
tensive variables of conductivity, 4, and diffusivity, a. The
conductance ratio, {, will be defined as 4,L,/4,L, and the
ratio of the heat capacities per unit area, p, as d,C,L,/d,C; L.
From parametric studies of equation (15), it can be shown
that at constant conductance ratios, {, the heat capacity
ratio g, is given by p = m{TI,l,/d,C,L?] + b and where m
and b are functions of { and T, is the time integral measured
at x = 0. As the conductance ratio { becomes smaller, the
slope approaches 3 and the intercept approaches —3. For
{ less than 001 the heat capacity ratio approaches
{{TKO),/d,C,L?] ~ 3. This can be reduced to E = 3/p
where E is the error in the time integral due to the presence
of the heater, i.c., [TI, (Heater + Sample) — TI, (Sample)]/
TI,(Sample). TI, (Sample) is the time integral of the sample

with a massless heater measured at its input face and would
be given by T'I, (Sample) = L}/3a.

A method has been developed for measuring the thermat
diffusivity of low density foamed insulating materials. The
heat capacity of the source of the input flux was included in
the analysis by using a double layer infinite slab model.
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